November 28, 2018

SciPy

SciPy, pronounced as Sigh Pi, is a scientific python open source, distributed under the BSD licensed library to perform Mathematical, Scientific and Engineering Computations.

The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with NumPy arrays and provides many user-friendly and efficient numerical practices such as routines for numerical integration and optimization. Together, they run on all popular operating systems, are quick to install and are free of charge. NumPy and SciPy are easy to use, but powerful enough to depend on by some of the world’s leading scientists and engineers.

SciPy Sub-packages

SciPy is organized into sub-packages covering different scientific computing domains. These are summarized in the following table −

scipy.cluster Vector quantization / Kmeans
scipy.constants Physical and mathematical constants
scipy.fftpack Fourier transform
scipy.integrate Integration routines
scipy.interpolate Interpolation
scipy.io Data input and output
scipy.linalg Linear algebra routines
scipy.ndimage n-dimensional image package
scipy.odr Orthogonal distance regression
scipy.optimize Optimization
scipy.signal Signal processing
scipy.sparse Sparse matrices
scipy.spatial Spatial data structures and algorithms
scipy.special Any special mathematical functions
scipy.stats Statistics

Data Structure

The basic data structure used by SciPy is a multidimensional array provided by the NumPy module. NumPy provides some functions for Linear Algebra, Fourier Transforms and Random Number Generation, but not with the generality of the equivalent functions in SciPy.